' AD=A080 184  PENNSYLVANIA UNIV PHILADELPHIA ol:l-t oF svsrzns ENGIN==ETC F/6 9/ |
SIGNAL PROCESSING ru‘r:hs UNDER MODELIN® UNCERTAINTIES.(U) 9
-, 1979 S A KASSAM, T L LIMe L J CIMINI Airosn-'n-usn
UNCLASSIFIED AFOSR=TR=80-0021

|
i
END
DATE
rum[)




I O '\‘H ‘:: ““
N | e . .
—— M i
e T
Som— | “ =
1 i
' ;

(] & has
A

lL2s e gee




. LEveL 17—
I STOTO [T PR Srv o Y
SECUNI'V CLASSIFICATION 0' P d U " ~ % * “

| 7. REPORT DOCUMENTATION PAGE b 2 READ INSTRUCTIONS

BEFORE COMPLETING FORM

-’ an ‘\2. GOVY ACCE 0.l 3. RECIPIENT'S CATALOG NUMBER
Q AFOSRTR-B§ - #21

‘/L\ o TATLE Con Sutalatos - S. TYPE OF REPORT & PERIOD COVERED
SIGNAL PROCESSING FILTERS UNDER ’MODELINC /
;U'NCERTA NTIES :

A W S 8 S PN

—— e
P

i . 8. CONTRACT OR GRANT NUMBER(s)
kzgi) Saleem Aleassam Tong Leong/Lim and N\
“ Leonard /Cimlni SeEd , @} v’ AFOSR=77-3154 ),, o
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
w ; DRI AREA & WORK UNIT NUMBERS
University of;?ennsylvania /- i o -
youm Dept. of Systems Engamedisn- « 61102F 14/1532 A5 j
Philadelphia, RA 19174 /6 q
c 11. CONTROLLING OFFICE NAME AND ADDRESS .| 12. REPORT DATE *
w / ” 197‘9-/'
' Air Force Office of Scientific Research/NM \ 53—\ Ouscr oF races
c Bolling AFB, Washington, DC 20332 20
14. MONITORING AGENCY NAME & ADDRESS(/f different from Connolllng Otlice) 1S. SECURITY CLASS. (of this report)
@ 02! UNCLASSTF IED
S I 1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION ST, 4ENT (of '« abstract entered in Block 20, if different from Report)

_,
Y,

000 _FiLe_cop

18. SUPPLEMENTARY TES mﬂm
[L FEB 4 1900
n InmIrVImIave]
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) L& | Bue | S} B | ¥ B W i Sem |

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

Matched and Wiener filters are considered for signal processing appli-
cations when the a priori information about signal and noise characteristics
are not completely specified. The approach is to design filters which are
saddle-point or max-min solutions for the criterion functional (mean-
squared-error or signal-to-noise ratio) over the classes of allowable signal
shapes and signal and noise spectral densities. Two-dimensional discrete-
parameter processes are considered, and some numerical examples are presented.

UNCLASSIFIED /7¢// }_(_,47(.

Jan 7y 1473




SIGNAL PROCESSING FILTERS UNDER
MODELING UNCERTAINTIES

Saleem A. Kassam, Tong Leong Lim and Leorard J. Cimini

STRACT

Matched and Wiener filters are considered for signal processing applications
when the a paioni information about signal and noise characteristics are not
completely specified. The approach is to design filters which are saddle-point
or max-min solutions for the criterion functional (mean-squared-error or signal-
to-noise ratio) over the classes of allowable signal shapes and signal and
noise spectral densities. Two-dimensional discrete-parameter processes are

considered, and some numerical examples are presented. ﬁf"“

I. INTRODUCTION

Classical formulations of signal processing problems assume that the 5
characteristics of signals and noise can be modeled exactly, either deter-
ministically or statistically. For example, if the shape of a deterministic
signal is known and the noise additively corrupting it has a known power spectral
density (PSD), then a filter maximizing the signal-to-noise ratio (SNR) at
its output can be designed; this results in the well-known matched filter.

In the same way, the optimum Wiener filter can be obtained for the best linear

estimate of a random signal in additive noise, when both PSD's are known.
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In many applications it is much more reasonable to assume that the signal
and noise characteristics are nct completely known, and to assume that they
can only be defined as belonging to appropriate classes of characteristics.
The sizes of these classes reflect the degrees of uncertainty that one has
about the true signal and noise characteristics. In such cases, it is desirable
to have filters which perform well over both classes of allowable signal and
noise characteristics, that is, we should look for robust filters.

In general the specification of an optimum filter for processing inputs
requires knowledge of the multivariate protability distribution functions
characterizing the input random processes. For estimation and detection ap-
plications under the widespread assumption of Gaussian input processes the
optimum filters are generally linear, and are based on the bivariate density
functions, that is, the mean and covariance functions, of the input Gaussian
process. Even if the input processes are not Caussian, a restriction to linear
filtering, as in Wiener and matched filtering, allows optimum filters to be
obtained if mean and covariance function information {s available. In this
paper we will be dealing with cases of linear filtering where this bivariate
information is imprecise. Other efforts in robustness theory have been con-
cerned with the deviations from Gaussian distributions which may occur in
input processes. Allowances for distributional impreciseness have led to many
interesting results on robust nonlinear structures in detection and estimation
theory [e.g., 1-5]; however, such results deal almost exclusively with uni-
variate density functions and hence "“white" inputs because of the major'
analytical difficulties which otherwise appear.

One of the earliest investigations of robust linear filtering ideas was
reported by Yovits and Jackson in 1955 (6]. They considered a game-theoretic
problem of max-min filter design for signal estimation in additive noise with

mean~squared-error as the pay-off functional, the signal having constraints on
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its meamsquare derivatives. Although the realizable Wiener filter was con-

sidered, only for the white-noise case was it possible to obtain explicit re-

sults. In [7] and [8) Nahi and Weiss obtained "bounding filters" for the

Wiener and Kalman filter, which were possibly lower-order filters with

guaranteed error performance for classes of input characteristics. More re-

cently, Kuznetsov [9] obtained the saddle-point matched filter for the SNR

criterion; specifically, with the Fourier transform S(w) of a finite energy

signal allowed to be a member of a class Cs' and for the noise spectral density

N(w) allowed to be a member of a class Cn' the saddle-point solutions were ob-

tained for the game with pay-off SNR(S,N;H). Here SNR(S,N;H) is the SNR obtained

when filter H is used for signal and noise characteristics S(w), N(w), respectively.

Kuznetsov obtained separately the robust filter for S(w) in Cs with N(w) known, and

for S(w) known andN(w) in Cn. The class Cs was the class of finite-energy signals

which are within an allowable distance A > 0 of a nominal So(w) characteristic, in

the sense of L2 distance. The class Cn was the "band-model" class of the spectral

densities bounded by given densities NL(w) < Nu(m), with a total-power constraint.

In (10], Kassam and Lim obtained the structures of robust (saddle-point)

filters for the Wiener filter formulation, with both signal and noise spectral

densities allowed to be members of classes of densities specified by "band-models".

In [11], Poor generalizes some results cn Wiener filters obtained in [10].

Here we will obtain the robust matched and Wiener filters for two-dimensional

discrete-parameter systems subject to uncertainties simultaneously about signal

and noise characteristics. Thus this work represents a logical extension of the

recent results in [9-11].

II. ROBUST MATCHED FILTERES

Let s(m,n) be a real, finite-energy, two-dimensional, deterministic signal
sequence, where m,n are integer variables, and let S(u,v) be the two-dimensional

discrete-time Fourier transform of s(m,n). If N(u,v) is the PSD of a real, station-
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S

ary, zero-mean, additive noise, then the matched filter with frequency response
o (u,v) = s*(u,v)/N(u,v) )

maximizes the SNR at its output at m=0, n=0. If an arbitrary filter H(u,v) is

used, the SNR functional is
0 e (132 1fIS(u,vIH(u v)dudv|2
SNR(S,N;H) (fﬁa ITN?u.vilH(u.vi!*dudv @

In (2) and the rest of this paper, except where indicated otherwise, every double
integral is over the region {u,v|-m<u,vSn}. In the following, we will drop the
arguments of the functions wherever no confusion results.

Consider the following models for the classes of allowable signal and noise

characteristics:

¢, = {S(u,v) ] (ﬁ)’”ﬁ-sol’ dudv S8}, 3

W {N(u,v) l NL(u,v)sN(u,v)fNU(u.v) and (i%)szN(u,v) dudv = o;} (4)

In the definitiun of Cﬁ, So(u,v) is a nominal signal characte;istlc, and signals
in C- differ in energy from the nominal signal so(m.n) by no more than §. To
exclude a trivial case, we assume that the energy gg]so(m.n)lz\ﬁ. The class Cs
is a reasonable model for the allowable signal when it is known that s(m,n) is
within a neigborhood of so(m,n). The class Cn of noise PSD's contains PSD's

with a specific total power o; which lie between given upper and lower bounds.

Such a model is appropriate, for example, when N(u,v) is estimated from samples.

In the definition of cn. we assume that NL(u.v) {a bounded.

The robust matched filter Hn(u.v) is defined to be the max-min filter such

that max min SNR(S,N;H) = min SNR(S.N;HR)
H SGC. SCC.
(5)
NeC, NeC_
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If Hn is the optimum filter for a least-favorable pair of characteristics Sngcs.
u.;cn. then we would have
’ > E > .
SNR(S.N.HR) - SNR(SR.NR,HR) fa SNR(SR.NR.H) (6)

for any pair (S,N) in C‘xcn and any linear filter H, and (5) would be satisfied.

In this case, the filter H-“R and the pair (SR,NR)eCstn will form a saddle-point
for the SNR functional of (2).

The main result of this section is the following theorem, which gives the
saddle-point solution for our matched filtering problem:
Theorem 1. For the classes Cs and Cn, the robust matched filter HR is the optimum

filter for the pair of least favorable charucteristics defined by

S (u,v)N_(u,v)
0 R
sR i N Zu.vi +c ™
R
and
: Nu(“’V) X (U.V)eau(k)
NR = NL(u,v) % (u,v)ERL(k) @
»lSR(u,v)lIk »  (u,v)ery, (k) (8)
where
Ry(0) = {(u,w iy < |5} . ®
RGO = ()| Isgl <y} : (10)
Ry (k) = {(u,v) IkNL < Isgl < Wy}, (11)

if non-negative constants k,c exist satisfying

@ 1% .
o ”[lnzﬂll dudv = § , 12)
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[In dudv + [[n dudv + 3 [1ls lduav = @2m2o} a3

R Ry Ry (K)

We omit the detailed proof of the theorem, since it is somewhat lengthy. However,
some clarifying comments can be made, and an outline of the proof follows.

The structure of the solution is suggested by the results given in (9,10].
Eq. (12) results from conditions imposed in defining Cs. and (13) is the power
constraint for the class cn' Note that (7) and (8) are coupled, but that SR

and N, can be expressed in terms of the known So. NL‘ and Nu. and constants k

R
and ¢, which can be solved from two simultaneous equations derived from (12)
and (13). The proof shows when such a solution for k and c will exist. The
saddle-point condition (6) can be verified by noting éhat HR is optimum for
SR and NR [one part of (6)], and by showing that (SR‘“R) minimizes the numerator
in (2) over all (S‘HR) with SeCs. (NR,HR) maximizes the denominator in (2) over
all the (N,H) with NeC .

For the case where either §=0 or NL = NU the above results become somewhat
simpler. Theorem 1 also gives, as a special case, the robust filter for a dif-
ferent model, the ¢-model ({10}, for N(u,v). We will consider this model in a

simple example in the next section.




Outline of Proof of Theorem 1

Since “R is the optimum filter for the pair (SR'NR)' we have to show only that
>
SNR(S,N; “R) SNR(SR. R'“ ) for all (S,N) in C‘xcn.

Consider the denominator term in (2), and call it d(N,H). Now

2 2
d(N,H)~d (Np Ho)=k* R’{I(k) (N-Np)+ ,.y(k)(n-n,‘)lnnl *ny(k)“““u”“a' (14)
On ll(k)' |HR|z < k? and on Ru(k). IHRI2 2 k?; thus using the power constraint, we
find d(N.HR)-d(NR,HR) <0

In showing that the numerator term in (2) is minimized for S-SR given that
HeH_, ve note that 11[865/(NR+C)] is non-negative, and we consider the minimization

of !![SS(S-SO)/(NR+C)]. This last term is real, so we consider

J’ I{ I8yl 18-85,/ (gt ©) Jcoslarg s3(S-5) Jdudv

This term is a minimum when the cosine part is -1, and the result of (7) for the
minimizing S can be obtained from Schwarz's inequality.

In order to show when the solution given by (7) and (8) exists, that is,
when non-negative constants ¢ and k exist which are solutions to (12) and (13),

we rewrite Eqs. (12) and (13) as

Il I |G -

Rk ot Rol t R, Sl ~e) = 1s)
and
o J’L 8ol " soll - ShR Sol’ S8 e amt R
R G, L =T RyGe,e) Pt Rk,




1 where IL(k) of Eq. (10) has been written explicitly as

R (k,0) = {(u,v) ISOINL S W N0} an

and similarly

Ry (k,c) = ((u.V)|kNu(Nu+C) < |spIN, and N >0} (18) d
Ry(k,0) = R (k.0 n R, (k0 (19)
Suppose the condition
”lso|zdudv < (2m?8 < ”[Solzdudv + ”lsolzdudv (20)
N =0 N =0 N >0
Nu<w

is satisfied. This will be true in many models of interest; it is valid, for

example, when N, and NU are finite and non-zero when ISOI is positive. Then

L

there exists a finite, positive solution e=cy in Eq. (12) with N replacing

L

in the equation

“R’ and there exists also a finite, positive solution c-c22c1

syl . !
II|S°|zdudv +c? IITH’IES)'d“dV = (2m)°$ (21) ‘
U

NL.O NEO

If the set {(u,v)

f

H

!

-l > S i
Ny NL)NLISO| 0} has positive measure, then )¢, Otherwise, g

o

€y=cy.
Consider Eq. (16). Let k-k‘(c) be the solution for k with ce(cl.czl. For

c=c,, ve define k_(c,) as the ess sup over the set {(u,v)INL[SOI>0) of [Sy|/(N +e)

and for c=c, ve define k (c,) similarly as the ess inf, over the same set, of

lsoll(Nu*cz). The solution kg (c) is a smooth, non-increasing function of ¢ on

leysey)s




Suppose the condition

(Zn)‘o; < ”NLdudv + ”uududv (22)

lsol-o lsoluLm
is satisfied. This is also generally true. Then the solution k-kn(c) with cm[cl.c,]
for Eq. (15) exists, and we have k‘(cz) < kn(cz) 5 kn(cl) < ks(cl). (Note that
(22) 1s not compatible with cl-cz‘o. given that IINLdudv < (2m)3%§ < f!ﬂududv).
The solution kn(c) is also a smooth, non-increasing function of ¢ on [cl.c,]. Thus,
positive solutions k,c always exist, when (20) and (22) are satisfied, for the
simultaneous equations (12) and (13).

If (20) is true but (22) is not, we may pick N -NU when !SO|NL>0. N =0

R R

when NL-O and |50|>0. and N, arbitrary otherwise, with S  as in Eq. (7) and c=c,.

R R

Similar special cases can be considered when (20) is not satisfied, for example when
Nu is unbounded everywhere.

If the set {(u,v) (NU—NL)NLISO]>0} has measure zero (for example, N =N,) and

§>0 we take c=c,=c, (assuming the LHS inequality in (20) is valid, otherwise the

solution is trivial)and NR-NL when |S°|>0. arbitrary otherwise. If §=0 and

{(u,v) (NU-NI)NL|S°|>O} has positive measure, we can set c=0 and take k-kn(O)
the finite, positive solution of Eq. (15), assuming (22) is true (otherwise
the solution is trivial). We will consider another special case in the next i

section.

III. A NUMERICAL EXAMPLE

We will now consider a simple specific model for the signal and noise character-
istics and derive some numerical results. Consider the case where N(u,v) and S(u,v)

are circularly symmetric, so that we may express N(u,v) as N(r) and S(u,v) as i

S(r) wvhere r = /u™+ v® . We define a particular nominal signal Fourier transform

NP o -

by




So(m 'l SRS 23)
In our first example, we will assume that we have precise information about the
noise,
N(r) = No(r)
- NL(r)

Ny ()

2.5-r, 03r <25

- (24)

0 ;5 r> 2.5

If we take §=0.55, which represents an uncertainity of about 7% of the total

signal energy, we can easily solve for the value c=0.1. Thus we have

4.0(2.5-r)
2.6-¢ %

S (r) = (25)
% 0 R

and the robust filter is

4.0 Tl
T 6t | IOl SIS 9]
un(r) = (26)
0 s £ > 2.5

The effect of the S-uncertainity in the signal definition thus prescribes a filter
designed on the assumption of an added white-noise component of level 0.1 for

the noise spectrum. This white-noise components results in a non-singular signal
detection solution, whereas the "optimum" filter “0 designed for the nominal
signal So and noise N results in a theoretically infinite SNR(SO,N;HO). However,
if Ho-io used when s+so, we could get very different results. For example, it

turns out that SNR(SR.N;RO) = -» dB, but with HR we get SNR(SR,N;HR) = 10 dB,




w1l -

which forms the lower bound for performance. When “R is used and the nominal
signal is in effect, we get SNR(SO.N:HR) = 14 dB.

To extend this example, let us introduce distinct upper and lower bounds for

NL(r) = (1-€) No(r) - @n

Nu(r) - . (28)

2
with €= 0.1 and noise variance ON assumed known to be the variance of No(r). the

"nominal" noise spectrum. This model may be interpreted as expressing a 90%
confidence in the validity of No(r) for the noise spectrum, with an arbitrary

noise component allowed otherwise. In order to obtain SR and N , ¢=c, was first

R 1

found as the solution of Eq. (12) with NL replacing N The correct ¢ has to be

R

larger than this. The solution k-ks(c) for ¢ > ¢, in Eq. (16) was then computed

1
numerically. Similarly, the solution k-kn(c) for ¢ > ¢y was computed numerically
for Eq. (15). The intersection of these two results gave the value of ¢=0.23 and

k=5.9. These results give

0.9(2.5-r) , 05Zr <20
Np(r) = 0.45 s 2.0<7r S2.8 (29)
0 y - 0 55
and
3.6(2.5-r) ¥ = &
0.9(2.5-1) v 0.23 *» 0°rs20
Sp(r) = 2.65 o F0CEEIY | (30)
0 % £ >33
8o that

bl s . B e e

R SR



i 4 s

Sl A, S s 50 S

A -
T S £ gk
00 ' faxAe
B (r) - 5.9 , 2.0<r€2.5 (D
0 ~ r > 2.5

Figure 1 shows a sketch of these functions. Numerical values for SNR's can also be
computed for this case of signal and noise uncertainity; the robust filter lower

bound on SNR will now be somewhat less than 10 dB, because of the additional

noise uncertainity.
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IV, ROBUST WIENER FILTERS
Let S(u,v) now be the PSD of a real, wide-sense stationary vandom s{gnal
observed as a mixture with real, wide-sense stationary, zevo-wean, additive
noise with PSD N(u,v). It {s well-known that the optimum linear fflter piving

the minimum mean-squared-error (MSE) estimate of the aignal {e gfven by

' O o 1 T S i

without realfzabfl{ity constratfunts.

In general, {f an arbitrary f{lter H(u,v) {r used, the MSE {= gfven by

1 2 2 )
e(S,N;H) = (ii) II[S(u,v)ll-“(u‘v\l NG (R ] dude (3D

and the minimum MSE is given by

S{u, vINu, v

R LR, dudv (14)

etsM = esnh) = () [f

4 We would like to conafder a method for designing the estimating filter H(u,v)

when the PSD's of the sfgnal and noise processes are not precisely known. The

i ————

approach which will be followed f{w a direct extension of the vne=dimensional

case given in [10].

We now assume that both the signal and notse PSD's belong to upper-lower
bounded classes of the form of (4). Thus we now have the allowable signal and

nofse PSD's to be members of classes n‘ and D“ defined by

s 2
B, " (S(u.v)‘séu.v) S sCuwy) o 8w v) and (;%) [T v dudy = uq‘ (1%)

and

- A1)
Dn C“ (36)

vhere C“ was defined in (4). We assume that the upper and lower bounds and

the total powers of the signal and noise processes ave known, with SL(n.v) and

N‘(u,v) bounded.




FPSEPPESSPE

S s s N NS

)k

The most robust filter NR(u.v) is defined as in (5), but now we require
the minimization of the MSE rather than maximization of SNR. If HR(u.v) is
the optimum filter for a pair of least favorable PSD's SRan. NRKD“. then NR(u.v)

must satisfy
e(S.N;HR) s e(SR.NR:HR) < e(SR.NR:H) (&YA)

for any pair (S,N) in D.XD - and any linear filter H(u,v). The filter Hg (uyv)
and the least favorable pair SR(u.v). NR(u.v) will form a saddle-point for
the MSE.

The main result {s the following theorem:
Theorem 2. For the classes D, and D, the most robust Wiener filter HR(u.v)
exists. It is the optimum filter for the pair of least favorable PSD's defined

according to the following:

k.NL(u.V) (“'V)E“l(ks)
Spluav) =« Sy uyv) (“""c"z(“.)
g SL(u.v) (u,v)e G(ka) (38)
and
—lk;sl.(“'v) (u.V)r.Bl(k“)
Nn(u,v) - ¢ Nu(u.v) (u'v)€82(kn)
t N (V) (u,v)e E(kn) (39)

where




18 .

a (k) = ((u,v) |8y uw) < kN (uyv) 5 S uwm}
ay(k,) = {(u,v) | S (uv) < 8 (u,v) < kBNL(u.v)} 8

T (k) = {(wW) | S, (uv) 2 ngL(“’v)} »
B‘(kn) s {(u,v) | \luNL(u,v) < SL(u‘v) < anU(u.v)) .
Byk) = ((uyv) [ KN (v 5 K NyCuv) < 8 Cuy0)b

B (k,)

if solutions k. < kn exist to the power coustraint equations

{(u,v) | anL(u.v) > sL(u.v)} ’ (40)

2
Pg(e) | g ’ (41a)
2
P“(l) ‘ k“ - GN . : (‘lb)
where
Ps(l) - (5%)al I{ zNL(u.v)dudv + £I SU(u.v) dudv
o z) 2(!)
+ _II SL(u,v)dudv] ) (42a)
a(z)
P(e) = (8)°1 [ é s, (v dudy + f] Ny (0, v)dudv
12 Bz(n)
+ II NL(u.v)dudv] (42v)

8(2)

There are two parts to the proof of the theotem, one showing the robustness
of the solutions and the other showing existence. The existence proof which
depends on finding a solution to (41) or other equations is similar to that giver in
(10] and will be omitted. The robustness proof is simpler, and we will outline it here.
In order to show that the above solution satisfies the condition for robust-

ness, we must show (as in [19]) that
O(S.N;“R) - o(SR.NR;“R) <0 (43)

when Hl(u.v) is the optimum filter for sn(“‘V) and Nk(u.v).




T e

We can consider the two terms, signal and noise, in (33) separately.
Define

e (42 " 1
Beyigna1 * (77 [[(sCu,v) sR(u.v)llm—R,ﬁRI’ dudv (44)

On “l(ks)' SR/NR - ks and, on Bl(kn). SR/NR = k, so that 1/(1+SR/NR) € 1/(l+k’).
On qz(k'). (S-SR) is non-positive and SR/NR s kg so that l/(1+SR/NR) 2 1/(l+ks)
and, on Bz(kn). the integrand is non-negative and 1/(1+SR/NR) 5 l/(1+ks).
Finally, on the rest of the (u,v) plane, SR/NR-SL/NLiks and the integrand is

non-negative. Thus,

& pilich I
Begignal - T (D) [T(sCu,v) -8, (u,v) ldudv, (45)

and from the power constraint we get

<
Aesignal =0 (46)

In a similar way, the noise term can be shown to be non-positive and robustness
is proved.

Notice that although Theorem 2 asserts the existence of a least-favorable
pair of PSD's, it only defines them for a particular case when the equations in
(41) have solutions with k<k . This also turns out usually to be the case.
Otherwise, the least-favorable densities can be obtained directly from the
detailed version of the theorem in [10] for the one-dimensional case.

This theorem specifies the least-favorable spectral densities as a pair of
spectral densities which tend to be as similar as possible, within the given
classes. This is apparent from (38) and (39), and is a reasonable solution
from intuitive considerations. 1In fact, it is possible to prove that in a gen-
eralized sense of "dfstance" between two spectral densities, the solution of

Theorem 2 species the minimum distance pair [12].




It should be noted that the result of Theorem 2 can also be applied to

another pair of classes E. and En for the signal and noise PSD's, defined by
E, = {S(u,v)|S(u,v) = (1-€ IS (u,v) + €S _(u,v) and

”so(u.v)dudv = []5 (u,v)dudv} (47)

and similarly for En. Here So(u,v) {8 a known nominal signal spectral densfity,

€, is an assumed degree of contamination allowed for So(u.v). and Sc(u.v) is an

otherwise arbitrary spectral density. With SL(u.V) - (l-r.) $pu,v) and Sy (wav)

everywhere unbounded in (35), the class D‘ becomes the above E.. Numerical

results for such classes {n the one-dimensfonal case given in {10] show the

usefulness of these concepts of robust Wiener filtering.

V. CONCLUSION

A design philosophy for filtering signals in noise has been presented,
applicable in cases where signal and noise characteristics cannot be modeled
precisely., The robust matched and Wiener filters have been derived for two-
dimensional discrete-time applications. Such filters can be useful in many two-

dimensional signal detection and estimation applications.
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FIGURE CAPTION

Figure 1. Robust filter and least-favorable characteristics considered in
Section III,
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